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PREFACE 

In February 1965, Dr. Ernst  Stuhlinger, Director, Research 
Projects Laboratory, initiated a series of Research Achievements 
Reviews which set forth those achievements accomplished by the 
laboratories of the Marshall Space Flight Center. Each review 
covered one o r  two fields of research in a form readily usable by 
specialists, systems engineers and program managers. The review 
of February 24, 1966, completed this series, Each review has 
been documented in the "Research Achievements Review Series. 

In March 1966, a second series of Research Achievements Reviews 
was initiated. This second series has emphasized research areas 
of greatest concentration of effort, of most rapid progress, or of 
most pertinent interest to our research community. These reviews 
are being documented and published as "Research Achievements 
Review Reports, Volume II," Volume I1 will cover the reviews 
extending from March 1966 through February 1968. 

The paper in this report was presented March 31, 1966 

William G.  Johnson 
Director Experiments Office 
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Russell D. Shelton 

SUMMARY 

The status and scope of the Radiation Research 
Program at Marshall Space Flight Center are de- 
scribed in this report. The application of radiation 
to engineering problems and the effects of nuclear 
and space radiation on materials and components 
are discussed. Much of the progress made in the 
last year consists of the continued accumulation of 
engineering data. The Propulsion and Vehicle Engi- 
neering Laboratory has continued its testing of mate- 
rials under reactor space radiation environments. 
The Astrionics Laboratory is concerned with the 
effects of radiation on electronic components and the 
development and calibration of instrumentation for 
the measurement of the radiation environment. The 
Research Projects Laboratory has been primarily 
concerned with the transport of radiation through 
shields and the aspects of radiation from the physical 
viewpoint. Appropriate contracts and publications 
in the field of radiation physics are referenced. 
Several applications of radiation for the solution of 
engineering problems a re  discussed briefly to indi- 
cate their feasibility and to provide contract and doc- 
ument references. 

I NTRODUCT ION 
Radiation research at the Marshall Space Flight 

Center (MSFC) is applied in nature and is distributed 
among organizational elements according to their 
missions and responsibilities. The effects of radi- 
ation on materials is studied by the Materials Divi- 
sionof the Propulsion and Vehicle Engineering Lab- 
oratory; the effects of radiation on electronic com- 
ponents is the concern of the Astrionics Laboratory, 
which is largely electrical engineering in composition. 
Radiation research is incorporated into existing stud- 
ies and in laboratories as an integral part of a project 
or  program. For example, a complete description 
of the dielectric properties must include a knowledge 
of whether these properties are moisture-, radiation-, 
o r  temperature-dependent. From the environmental 
viewpoint, radiation in the form of X-rays, gammas, 
neutrons, protons and electrons is just another en- 
vironmental factor which must be considered by the 
engineer in his effort to produce equipment which 
will perform properly. 

- 

An effort is also being made to understand the 
basic transport of radiations through matter and of 
charged particles through electromagnetic fields. 
These studies are essential for an understanding 
and evaluation of problems in  technical areas such as 
ackanced propulsion concepts, nuclear power supplies 
for space applications, spaceship design, nuclear 
test facility planning, interaction of charged particles 
with space vehicles, space experiment planning and 
integration, thermonuclear power, Civil Defense and 
calibration requirements for radiation measuring 
instruments. 

The presence of high energy charged particle 
radiation in space is of immediate concern for man- 
ned space missions and relative to hazards as a func- 
tion of time, position and the amount and kind of 
shielding. These hazards extend to the spacecraft's 
components and materials exposed to space radiation. 
A recent example of such a problem was that of charge 
storage in dielectrics and subsequent Lichtenberg 
discharges which could produce electrical interfer- 
ence with spacecraft systems. Space experiments, 
whether or  not they are concerned with radiation 
measurements, must be examined from the viewpoint 
of their sensitivity to radiations which are not of 
direct interest, but which may be naturally present in 
space o r  present because of radioisotopes in the 
spacecraft. 

The interpretation of many space measurements 
requires an understanding of how the measured sig- 
nal interacts with its environment on the way to the 
detector. The techniques of radiation transport are 
universally applicable to photons, whether they arise 
as thermal radiation from hot bodies, as gamma rays 
emitted from reactors, o r  as X-rays produced by so- 
lar proton bombardment of the lunar surface. The 
concepts of collisions and cross sections are useful 
not only on the microscopic scale but also on the 
planetary scale in the discussion of meteoroid popu- 
lations. 

Electrons, protons, neutrons and photons are the 
primary concern of this report. Energetic electrons 
and protons exist naturally in the space environment 
in the form of trapped radiation, solar flare ejections 
and cosmic rays. Neutrons and photons, the latter of 
which may be called X-rays, gammas or bremsstrah- 
lung, depending on their origin, arise because of 
electron and proton interactions with spacecraft, the 



atmosphere of the earth, and the lunar surface, and 
may also ar ise  from radioisotope and nuclear power 
supplies. Electrons and protoils, being charged 
particles, interact with both matter and electromag- 
netic fields, whereas neutrons and photons are neu- 
tral particles and, for  most purposes, interact only 
with matter. 

This report is concerned with radiation research 
at MSFC and associated contractors. References to 
published work and NASA contract numbers are in- 
cluded as a guide for  those whose interest extends to 
specific areas. 

FACILITIES, PRESENT AND PLANNED 

Facilities are usually justified and built because 
of highly specific program demands. Whether o r  not 
they have application to other situations depends on 
a number of factors such as the versatility of the fa- 
cility and the associated personnel. As a rule, re- 
search facilities and personnel are expected to be 
more basic and general in orientation, although im- 
mediate program requirements may regiment and 
closely define the work for extended periods of time. 
The radiation facilities a t  MSFC a re  built around 
some type of radiation source, e. g., a Van de Graaff 
accelerator, a Co6' array, o r  an X-ray machine. 
With each radiation facility there must be enough 
equipment to guarantee safety and to permit measure- 
ment, definition, and calibration of the radiation 
environment produced in the facility. Personnel as- 
sociated with the facility must have the specialized 
knowledge and training to use it efficiently and safely. 

The location of a facility within an  organizational 
segment does not preclude its use by outside person- 
nel in an entirely different application. For  example, 
Dr. Charlotte Lee of Alabama A & M College was 
permitted to use the Van de Graaff in the Materials 
Division for radiological studies. 

THE VAN DE GRAAFF FACILITY 

The Van de Graaff charged particle accelerator, 
located in the Materials Division of the Propulsion 
and Vehicle Engineering Laboratory, is a particularly 
versatile device for  producing various kinds of rad- 
iation in energy ranges of interest in space applica- 
tion. The MSFC Van de Graaff Facility (Figs. 1 and 
2) was designed for  the multiple capability of simul- 
taneously irradiating materials with ions, ultraviolet, 
infrared and possibly electrons in a vacuum environ- 
ment. It can also be used to generate large quantities 
of X-rays by accelerating electrons into high-2 tar- 
get material and neutrons by accelerating deuterons 
into a deuterium or tritium target. 
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I U V MONOCHROMATOR 
2 U V TEST CHAMBER 
3 INTEGRATING SPHERE 
4 NEUTRON MODULATOR 
5 ANALYZING MAGNET 8 TUBE 
6. CHARGED PARTICLE TEST 

CHAMBER 
7. U V SOURCE 
8 ACCELERATOR 

FIGURE 1. MSFC VAN DE GRAAFF FACILITY 

I. ACCELERATOR 
2. U.V. SOURCE 
3. CHAROED PARTICLE TEST CHAMBER 
4. ANALYZING MAGNET a T U 6 E  
5. U.V. MONOCHROMATOR 
6. U.V. TEST CHAMBER 

FIGURE 2. SCHEMATIC OF VAN DE GRAAFF 
FACILITY 

ASTRIONICS RADIATION FACILITY 

The radiation facility, located in the Instrumen- 
tation and Communication Division of the Astrionics 
Laboratory, is geared toward the testing of electronic 
components and the development and testing of vari- 
ous kinds of radiation instrumentation. The facility 
shown in Figures 3 and 4 will house in Hot Cell "Bfr a 
20,000-curie Co60 source for gamma irradiations a t  
the dose rate up to 4 x 10 roentgens per hour. Re- 
mote manipulators in both hot cells will permit as- 
sembly and arrangement of intense radioisotope 
sources needed for radiation effects testing and instru- 
ment calibration. 

6 



This basic radiation facility is supported by a 
large electronics organization with complete capa- 
bility in all aspects of circuit design, digital techni- 
ques, flight instrumentation and environmental test- 
ing. The supporting equipment associated with this 
facility includes a 400-channel pulse height analyzer 
(RIDL Model 34-12B), a 2n proportional counter 
system (NMC Model PCC-IOA) for radioactivity mea- 
surements, and a vacuum pumping system. 

HOT CELL"@" 

CONTROL ROOM 

RADIATION SHIELDING 
WINDOW 

/l HOT ROOM STORAGE 

RADIATION SHIELDING 
WINDOW a MANIPULATOR2 

CONTROL ROOM 

HOT CELL"@" RADIATION SHIELDING 

FIGURE 3. SCHEMATIC OF ASTRIONICS 
LABORATORY'S HOT CELL RADIATION FACILITY 

Hot Cell "A" is presently occupied by a neutron 
generator (Texas Nuclear Model 9900). The device 
accelerates deuterons into a deuteron or  tritium tar- 
get, thereby producing in excess of 10" neutrons per 
second from deuteron-deuteron and deuteron-tritium 
nuclear reactions. This device can also produce en- 
ergetic protons from the deuteron-tritium reaction, 
and gamma rays from neutron capture and inelastic 
collisions. 

Also available at this facility is an X-ray genera- 
to r  (Norelco Model MG-100) capable of operating up 
to 100 kiloelectron volts and producing 2.5 x lo8 
roentgens per hour a t  10 centimeters and a collection 
of encapsulated sources, including a polonium- 
beryllium source delivering 1 . 9  x IO6 neutrons per 
second. 

FIGURE 4. ASTRIONICS LABORATORY'S HOT 
CELL RADIATION FACILITY 

OTHER RADIATION FACILITIES 

A number of low-level radiation facilities a re  
associated with special radioisotope applications 
such a s  shield evaluation, leak detection, instrument 
calibration, gas pressure and density measurements, 
and t racer  applications. Table I enumerates a num- 
ber of radioisotope users and their interests. Table 
I1 lists a number of radioisotope applications of 
interest to various R & D people who may or may 
not have radioisotopes with which to experiment. As 
a rule, each radioisotope on the premises has some 
storage facility associated with it and the necessary 
safety and application appurtenances such a s  film 
badges, radiation survey meters, radiation detectors 
and specialized electronics equipment. 

RAD I A T l O N  EFFECTS ON MATERIALS 

The space environment contains several types of 
radiation which may change the bulk o r  surface prop- 
erties of materials. The low-energy protons and 
alpha particles ejected by solar flares can change 
surface properties such as  emissivity and absorptiv- 
ity. The high-energy electrons and protons, pro- 
duced by solar flares o r  present in the captured rad- 
iation belts o r  cosmic rays, can change the optical 
properties of lenses and windows and damage solar 
cells and photographic film. The ultraviolet radiation 
can promote chemical reactions and outgassing in 
organics. Neutron and gamma radiation arising from 
reactors used in nuclear stages for pr imary propul- 
sion can present a serious materials problem, espec- 
ially in the immediate vicinity of the reactor. For  
several years, the Materials Division of the 

3 



TABLE I. RADIOISOTOPE USERS AT MSFC 

USER 

A. M. Payne, R-TEST-IDT 

H. D. Burke, R-ASTR-IMT 

B. Corder, R-QUAL-AVR 

A. Hafner, R-ASTR-1M.P 

R. Potter, R-RP-N 

H. H i k e r ,  R-QUAL 

T. Ihowling, R-P&VE-MEE 

W. White, R-TEST 

C. Jacks, Emergency Planning 

E. Parrish, R-AERO 

E. Donald, R-TEST 

W. L. Kimmons, R-ASTR 

No. of 
Sources 

16 

5 

3 

2 

8 

I 

4 

50 

i 

4 

6 

i 

Purpose 

Gas density measurements 

Instrument calibration and research 

Leak testing 

Density measurements 

Electron density measurements 

Leak testing 

Instrument calibration 

Density measurements in cryogenic fluids 

Civil Defense 

Gas density measurements 

Gas density measurements 

Ionization pump 

TABLE II. USES O F  RADIATION SOURCES 

Design and calibration of radiation detectors 

Leak detection 

Velocity indication 

Damage studies 

Materials 

Components 

Radiation effects 

Materials 

Electronic components 

Radiation research 

Shielding 

Activation 

Density measurement 

Vacuum chamber 

Cryogenic fluids 

I. 

Random number generators 

Tracer techniques 

Wear ,  Ablation, Flow rates, 

Chemical and Biological processes 

Solid-state research 

X-ray techniques 

Proton shield evaluation 

Gas density measurements 

Saturn V test stand checkout 

Inspection of components 

Liquid level indicators 

Disconnect signals 

civil  defense planning 

Ionization pump 



Propulsion and Vehicle Laboratory has been studying 
the effects of various kinds of radiation on materials 
important to space vehicles. These radiation effects 
a r e  measured and described in the manner common 
to materials testing, i. e., as an integral part of a 
complete materials testing and development program 
which considers all possible environment aspects, 
including radiation. Radiation testing of materials 
has followed two main lines: (I) that of evaluating 
materials in  a nuclear rocket radiation environment, 
and (2) that of evaluating materials in a space radi- 
ation environment. In some cases, radiation damage 
in one situation can be related to that in another, but 
a s  a rule the change in components, materials, ex- 
posure times and environments involved does not 
permit easy and reliable extrapolation from one sit- 
uation to another. 

ZONE TOTAL EXPOSURE 
n l c f  

The combined effects of space environmental 
parameters on space vehicle materials has been 
studied under both inhouse and contractor effort [I] 
with emphasis on solving the problems of making 
appropriate in situ measurements of samples during 
simultaneous exposure to several environmental 
factors such a s  temperature, vacuum, ultraviolet 
radiation, electrons and protons. 

I 

PEAK RATE TOTAL EXPOSURE PEAK RATE 
nlc&sec R Rlhr 

The combined effects of nuclear radiation, cry- 
ogenic temperature, and vacuum on the electrical 
properties of engineering materials has been studied 
in considerable depth and detail by Gause and 
McKannan [ 2, 3, 41. The measurement of material 
properties during reactor irradiation is made diffi- 
cult and expensive by the fact that the test equipment 
is damaged and activated, and by the requirement of 
remote operation and instrumentation. Consequently, 
m x t  material tests have been made before and after 
irradiation. Materials recently tested [ 51 under 
combined nuclear radiation, cryogenic, and vacuum 
environments a re  shown in Table 111 [ 61. For test- 
ing details and lists of other materials tested, a 
contractor's report is recommended [ 71. 

D-2 

E-2 

F-2 

TABLE ILI. MATERIALS TESTED UNDER 
COMBINED NUCLEAR RADIATION, CRYOGENIC, 

AND VACUUM ENVIRONMENTS 

I ?  x IO9 4 X IO8 9 2  x IO3 I 6 x IO5 

3 3 x IO9 62 x 10' 1.3 x 104 2 2 x 105 

I x 10'' I x 10'1 2.8 x IO2 2.8 x IO5 AEROBOND 430, EPOXY PHENOLIC ADHESIVE 
LEXAN, POLYCARBONATE / GLASS -ATE 
KYNAR, VINYLIDENE FLUORIDE PLASTIC 
SILASTIC 1410, SILICONE ELASTOMER 
MYLAR C, POLYESTER FILM 
SYLGARD 182, SILICONE POTTING COMPOUND 
Q94-002 FLUOROSILICONE SEALANT 
PRP-2277 NEOPRENE ELASTOMERIC SEAL 
PRP-19007 FLUOROCARBON ELASTOMERIC SEAL 
PRP-I37 ACRYLONITRIDE ELASTOMERIC SEAL 
CRP-20-2 POLYURETHANE FOAM (CO, BLOWING AGENT) 
CRP-20-2X POLYURETHANE FOAM (FREON BLOWING AGENT 
CRP-20-2X EPOXY FOAM (FREON BLOWING AGENT) 

RAD IAT I ON EFFECTS ON ELECTRON I C 
COMPONENTS AND SYSTEMS 

The effects of nuclear radiation on electronic 
components has been of design importance since the 
advent of nuclear fission power and was investigated 
with considerable resources during the development 
of the nuclear powered airplane. In the space envi- 
ronment, the familiar problems associated with the 
neutrons and gammas from nuclear power reactors 
are augmented by the presence of energetic electrons 
and protons and other high-energy charged particle 
radiations. 

THE EFFECTSOFREACTORRADIATIONON 
ELECTRONIC COMPONENTS 

Interest in propulsion by nuclear heat exchanger 
rockets has resulted in studies [ 81 of the effects of 
reactor radiation on electronic components in  envi- 
ronments such a s  that shown in Figure 5 [ 91. 

FIGURE 5. RADIATION FLUX FIELDS OF A 
NUCLEAR HEAT-EXCHANGER ROCKET 

5 



Emphasis has beenplaced on the study of the more 
susceptible semiconductor devices, the less sensi- 
tive electronic components such as resistors, ca- 
pacitors, inductors and electron tubes, and the de- 
sign of circuits "hardened" to radiation. 

An example of the hardening process is shown i n  
Figures 6 - 8. In Figure 6, an unhardened power 
supply showed severe degradation at i O4 roentgens 
exposure. With some attention to component selec- 
tion based on radiation testing histories and some 

R- 

R- 

FIGURE 6. PERFORMANCE OF IRRADIATED 
UNHARDENED POWER SUPPLY 

FIGURE 7. PERFORMANCE OF IRRADIATED 

RADIATION ENVIRONMENT 
HIGH-VOLTAGE POWER SUPPLY MODIFIED FOR 

circuit redesign, power supplies can be hardened 
sufficiently to survive a 3 x io5 roentgens exposure, 
as shown in Figure 7 [ io] .  With a special effort at 
design for  radiation survival and some sacrifices i n  
what might be an optimum design without the radia- 
tion problem, it is possible to push the useful oper- 
ation [ li] of the system beyond an exposure of 5 x I O 6  
roentgens o r  ioi4 nvt (neutrons per  square centimeter) 
as shown in Figure 8. 
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FIGURE 8. PERFORMANCE OF IRRADIATED 
SERVOAMPLIFIERS WITH SPECIAL DESIGN FOR 

RADIATION ENVIRONMENT 

The study of problems existing for Saturn mea- 
surement components used in conjunction with a RIFT 
stage has proceeded with preliminary testing at the 
Georgia Nuclear Laboratories of Lockheed. Twenty- 
five out of twenty-eight units withstood ten times the 
levels expected in the reactor inflight test (RIFT) 
instrument unit [ 121. A summary of the categories 
of devices tested is given in Table IV. Other items 
listed [ 131 included a large number of solid-state 
devices, capacitors, differential amplifiers, tran- 
sistors, resistors, cables, batteries and exploding 
bridge wire parts. In future tests, emphasis will be 
placed on microelectronics and new devices which 
show promise of useful application. 

TABLE IV. SATURN MEASUREMENT DEVICES 

ENVIRONMENT 
IN A REACTOR RADIATION 

____ ~~ 

Temperature Gauge 
Temperature Transducer 
Pressure Transducer 
DC Amplifier 
Carrier Amplifier 
Power Supply 
Leak Detector 

AC Amplifier 
Microphone 
Emitter Follower 
Accelerometer 
Rate Gyro 
Ion Chamber System 
Semiconductor 

Radiation Detectors 

In a radiation environment some electronic ele- 
ments such as transistors fail long before other tran- 
sistors, supposedly identical, suffer significant ra- 
diation damage, resulting in failure of random com- 
ponents. Apparently there were deviations in mate- 
rials o r  transistor production techniques which were 
not discernible in  the initial tests but which later 
became important in  the radiation environment. It 
would be desirable to separate these potential maver- 
ick elements from the group before they are used in 
components to be exposed to radiation. 



In order to select transistors which a re  uniformly 
resistant to radiation, a study [ 141 of the relevance 
of various design and manufacturing features to ra- 
diation survival is under way. Particular attention 
is being paid to possible surface effects and auxiliary 
materials because failures have occurred long before 
the basic semiconductor properties should have 
changed under irradiation. 

Another approach to improving radiation resis- 
tance is to go to new semiconductor materials. Sili- 
con carbide amplifiers now being developed [ 151 are 
expected to survive an irradiation of 
a t  temperatures of 573" to  673' K. 

to IOi5 nvt 

THEEFFECTSOFCHARGEDPARTICLE 
RADIATION ON ELECTRONIC COMPONENTS 

Because of the low radiation doses associated 
with components afforded even a minimum of shield- 
ing by spacecraft shells and normal packaging envel- 
opes, damage by the electrons and protons present 
in  space has not been viewed as a serious problem 
for  the average electronic circuit. However, some 
components such as solar cells and electrical cables 
are directly exposed to the radiation environment 
and some protection must be provided. 

The damaging effect of charged particle radiation 
on solar cells has been studied both experimentally 
[16a] and theoretically [ 16b], and is presently 
guarded against by specially designed covers which 
incorporate good optical properties but probably 
more shielding than is necessary. If large solar 
arrays a re  used for  propulsion power, more atten- 
tion must be given to establishing minimum weight 
shields [ 171. 

The storage of charge in dielectrics exposed to 
radiation has been studied for  many years. In space, 
charge accumulation because of exposure to electrons 
and protons can easily cause spurious currents in 
the picoampere range. In addition, the charge stor- 
age distorts the local electric field, and if the field 
becomes intense enough, dielectric breakdown and 
spurious signal production can occur. Distortions 
of the local electric field by charge accumulation in 
dielectric paints used to achieve a proper heat bal- 
ance can affect sensitive measurements of the space 
plasma. A large number of small Lichtenberg dis- 
charges in such paints might produce electrical 
noise which would interfere with satellite electrical 
systems. 

SHIELDING AND TRANSPORT STUDIES 

The study of the propagation of radiation through 
matter and force fields is of paramount interest in 
the fields of physics and astronomy, and is often 
designated by such names as radiation shielding or  
radiation transport. Radiation shielding research 
at MSFC is directed toward answering a number 
of operational and design questions: How much 
shielding should be applied to a solar cell which must 
operate for  one year in a 1000-kilometer equatorial 
earth orbit? How long can an astronaut safely re- 
main in stationary earth orbit without a solar flare 
storm cellar? How much shielding and what kind of 
material should be used to protect photographic film 
in a manned space vehicle designed for  a three- 
week stay on the moon? What should be the amount, 
composition, and disposition of shielding for a man- 
ned Mars landing vehicle using nuclear rocket and 
nuclear electric propulsion? How do radioisotope 
power supplies interfere with radiation experiments 7 
To answer such questions, one must know what kind 
of radiation is involved; how i t  is distributed with re- 
spect to time, energy and position; how it interacts 
with matter; and how much radiation exposure can 
be tolerated. These a re  not simple questions and 
can be attacked only by dedicated, competent and 
specialized study. 

The uncertainties in shielding calculations can 
be associated with a lack of knowledge in the radi- 
ation environment, e r rors  and omissions in com- 
puting the interaction of radiation with matter and 
fields, and e r ro r s  in estimating the tolerance to 
radiation of the item to be shielded. Shielding in- 
terests at MSFC have been concerned primarily with 
transport problems, but have had to consider the 
other aspects to provide answers to questions of 
practical interest. In general, environmental data 
were obtained from compilations by specialists under 
joint NASA and DOD contract to accumulate, extrap- 
olate, and refine radiation data available from U. S. 
and U. S. S. R. satellite measurements. 

PROTON SHIELDING 

The big uncertainties have been removed from 
the transport part of proton shielding, and the major 
concern is with computing refinements to economically 
handle the complex geometries normally associated 
with men and spacecraft. Machine costs can be re- 
duced considerably by devising simplified analytical 
functions to represent the mass of physical data 
associated with proton energy spectra and penetra- 
tion formulations 1181. Most of the interest in space 
shielding has been associated with high-energy pro- 
tons [ 191 because of their great penetrating power 
and their capability of producing secondary radiations. 

7 



As the problems of proton shielding have become 
better understood and more stabilized, and as the 
capability to use specialized machine codes have be- 
come more widespread, demands for simplified, 
accurate and convenient compilation of computer in- 
put data have increased. Figure 9, taken from a re- 
cent study [ 201, shows the relative e r r o r  incurred 
when a relatively simple and analytical expression is 
substituted for more accurate but highly cumber- 
some Bethe-Bloch formulation. Table V gives the 
eye and abdomen radiation doses [ 21 ] for an eight- 
man spacecraft using 2 . 5 4  and 19.3  centimeters of 
polyethylene shielding during a large solar flare. In 
these calculations, the emphasis is on a complicated 
geometry with simplified radiation data input. The 
effect of considering equipment and other new mem- 
bers in the calculation is in dramatic evidence. 
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FIGURE 9. PROTON RANGE ERROR CURVE 
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TABLE V. EYE AND ABDOMEN RADIATION DOSES FOR AN EIGHT-MAN SPACECRAFT 
DURING A SOLAR F U R E  

Protons 
cm2 - MV 

= 5.675 x l o 8  exp ( -p/ 80) 
dP 

198. 

116. 

Detectors 

1 9 . 3  cm Polyethylene 

Shield Only 

Shield + Equipment 

Shield + Crew + 
Equipment 

2 . 5 4  cm Polyethylene 

Shield Only 

Shield + Equipmenl 

Shield +Crew + 
Equipment 

165. 

115. 

1E 

2 . 8 7  

I. 82 

1.  17 

203. 

83.5 

1A 

2 .87  

I. 92 

0 . 2 9  

194. 

95.5 

1 . 8 7  

- 
2E 
- 

1 . 4 9  

1 .36  

0.78 

- 

98.0 

91.6 

47.6 

- 

2A 

2.07 

1.  80 

0 .20  

122. 

96.5 

1.  16 

E = detector in eye 
A = detector in abdomen 
1 = middle crew member at  instrument console 
2 = crew member in top bunk, head under instrument 

3 = crew member in hatchway 
4 = right crew member at instrument console 

console 

The proton environment varies greatly with time 
[22] ,  and many studies are concerned with the worst 
probable situations. Figure 10, taken from a recent 
calculation by M. 0. Burrell, shows the proton dose 
for the three largest solar flares in the last solar 
cycle. Here again, simplified representations of 
the solar flare spectra and the proton range formu- 
lations were used. 
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176. 

88.6 

54 .4  

5E 

I. 59 

1 . 4 3  

0.82 

107. 

98.1 

4 8 . 9  

5A 

2 . 0 8  

I. 80 

0.20 

124. 

97 .4  

1 . 2 3  

6E 

1.62  

1 . 4 4  

0 . 8 4  

105. 

89 .5  

4 9 . 7  

5 = crew member in top bunk, feet under instrument 

6 = crew member in bottom bunk, head under instru- 
console 

ment console 

ELECTRON AND BREMSSTRAHLUNG 
PENETRATIONS 

The Monte Carlo work of Martin Berger [ 231 of 
the National Bureau of Standards has been reduced to 
a few simple equations which can be incorporated into 



FIGURE 10. ACCUMULATIVE DOSE THROUGH 
VARIED THICKNESSES OF ALUMINUM FROM 

SOLAR PROTONS AND COSMIC RAYS 

characterized by intense interest and close coopera- 
tion by a highly select and specialized group of people. 
Experimental work has progressed at General Atomic 
[26] and Ling-Tempco-Vought [27] and theoretical 
work has been done at General Atomics [26], National 
Bureau of Standards [28] ,  and Union Carbide Corpo- 
ration [29] .  

1 

The agreement between theory and experiment 
has advanced satisfactorily as shown in Figures 11- 
13, [26, 271. The experimental work has required 
painstaking effort to avoid background problems [30]. 
The theoretical effort has become quite involved in 
the truncation of series [31] for greatest accuracy, 
the sophistication of Monte Carlo techniques [ 321, 
and the evaluation of integrals which resist conven- 
tional approaches [33] .  

The interactions of electrons with matter are of 
basic importance for shielding of personnel and equip- 
ment on space vehicles from electrons in space. The 
present investigations were prompted by inadequacies 
in existing experimental data and theoretical methods. 

An effort was undertaken to provide the shield 
designer with a straightforward, sufficiently accurate 
formula for establishing bremsstrahlung dose 

lO0c I I I I I 

2 = 13 
T = 0.5 MeV 

a computer code to calculate number, energy and dose 
penetrations for both normal and isotropically inci- 
dent electrons. More sophisticated analytica 1 codes 
have been written to calculate i n  a reasonable fashion 
the bremsstrahlung production and penetration in 
various materials. These codes are quite useful in 
obtaining realistic estimates of electron and brem- 
sstrahlung doses in satellite orbits [ 241. Results 
based on their application will be presented later in 
this report. 

ELECTRON INTERACTIONS 

The interactions of electrons with matter are 
extremely complicated and are of current concern to 
the studies of quantum electrodynamics and quantum 
field theory. Recently, M. E. Rose suggested that 
the picture might be further complicated by the facts 
that the electron sees a multipole nuclear field [ 251 
and that bremsstrahlung emission can occur from 
both the electron and the nucleus. Because of i ts  in- 
trinsic difficulty, both theoretically and experimen- 
tally, the work on electron interactions has been 

1 
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FIGURE 11. THIN TARGET DIFFERENTIAL 
CROSS SECTIONS 
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THIO( TARGET BREMSSTRAHLUNG SPECTRUM 
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FIGURE 13. ELECTRON ENERGY SPECTRUM 
FIGURE 12. THICK TARGET BREMSSTRAHLUNG AT FORTY DEGREES FOR A 0.183-cm THICK 

SPECTRUM ALUMINUM SLAB TARGET 

I ROENTGENS PER HOUR FROM VARIOUS 
REGIONS OF THE E o - k  PLANE FOR A 
FISSION SPECTRUM OF ELECTRONS 
IMPINGING ISOTROPICALLY ON AN INFINITE 
SLAB O F  ALUMINUM OF THICKNESS 
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FIGURE 14. ERRORS IN BREMSSTRAHLUNG DOSE CALCULATION DUE TO 
INACCURACIES IN INPUT CROSS SECTION DATA 
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as a function of incident electron spectrum and 
shield parameters [34-351. One of the essential 
problems was to estimate the e r ro r s  incurred in the 
calculated result due to inaccuracies in the input 
bremsstrahlung production cross section data. 
Some of the results of this effort are shown in Figure 
14 [35]. The detailed explanation of this work is in 
the process of being published. An interesting cal- 
culation associated with the above work was perform- 
ed by M. 0. Burrell and is shown in Figure 15. 
Here, the integrated proton f lux at the end of each 
orbit is plotted and compared to an accumulative 
average. The high points are associated with pas- 
sages through the South Atlantic anomaly. 

A. TIME AVERAGE PROTON FLUX - 
B. PROTON FLUX PER ORBIT 

P :: a 

ORBIT NUMBER 

FIGURE 15. PROTON FLUX CURVES 
FOR EARTH ORBITS 

REACTOR RADIATION SHIELDING 

Comparison, Evaluation, and Shield Calculation 
Methods -- 

Work was undertaken [ 371 to effect a comparison 
and evaluation of various shield calculation methods as 
applied to typical reactor systems for nuclear rocket 
propulsion. To this end, two simplified reactor-shield 
configurations were chosen, and insofar as possible, 
the same cross section input data were used in all 
calculations. 

Three classes of calculation methods were em- 
ployed: point kernel, discrete ordinates o r  angular 
segmentation, and stochastic o r  Monte Carlo. Two 
o r  more existing operational programs of each type 
were considered. 

Criteria adopted for code evaluation includes 
the following: 

(a) Type and detail of data obtainable 

(b) Flexibility for treatment of system config- 
uration, radiation sources and types of rad- 
iation interactions 

(c) Computer 1-unning time and time required 
for problem preparation 

( d) Relative difficulty of operation 

(e) Comparative accuracy of output. 

Results of the study are presented in Lockheed- 
Georgia Report ER-8236, Evaluation of Methods for 
Computing Nuclear Rocket Radiation Fields. 

Two figures relating to this work [38] are shown 
below. Figure 16 gives an outline of the two shield 
models which were used in the calculations. Figure 
17 shows a dose rate traverse computed for config- 
uration A, using five different calculational methods. 

CONF A 

CONF B 

I( R-  - Carbon RefIeCIOr disc TRAVERSE 

SHIELD MODELS 

FIGURE 16. RADIATION SHIELD MODELS USED 
IN COMPUTING NUCLEAR ROCKET 

RADIATION FIELDS 

A follow-on study is planned that will choose 
one or perhaps two of the most promising methods, 
convert these to Fortran IV, check them on MSFC 
computing equipment and train personnel in  their 
operation. 



RADIUS - c m  

FIGURE 17. NEUTRON DOSE RATE TRAVERSE 
USING DIFFERENT CALCULATION METHODS 

Development of Machine Codes for Calculating 
Radiation Fields in Nuclear Rockets 

The development of a Monte Carlo calculation 
program to predict the dose and heating inside and 
outside typical nuclear rocket reactor shield systems 
and in the hydrogen fuel tank has been in progress for 
several years. A current contract [ 391 with Radi- 
ation Research Associates, Fort Worth, should re- 
sult in a completely checked- out Fortran IV version 
of the program (called COHORT) and in the training 
of MSFC personnel to operate the program on the 
MSFC computing equipment. Essentially all of the 
component routines have now been checked out, and 
some sample test problems have been run. One 
simple geometry problem is that of determining heat 
deposition in a semi-infinite slab of hydrogen. Re- 
sults of this calculation for a normally-incident 
plane beam of 7-megaelectron-volt neutrons are 
shown in Figure 18 [ 401 , together with results deter- 
mined previously by Burrell [ 411 using his special 
purpose hydrogen heat deposition code. 
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FIGURE 8. HEAT DEPOSITION VERSUS DEPTH 
FOR 7 MeV NEUTRONS IN A LIQUID 

HYDROGEN SLAB 

Radiation Research is also planning to use 
COHORT on one of the sample configurations employ- 
ed by Lockheed-Georgia in their shield evaluation 
study to obtain a direct comparison against other 
calculation methods. 

ELECTROMAGNETIC SHIELDING 

The research program on active o r  electromag- 
netic shielding has continued in two main areas: anal- 
ysis of the motions of charged particles in magnetic 
fields, and advancement in the development of super- 
conducting magnets that will be required for such 
shields. 

Two types of active shields have been shown to 
be competitive with passive o r  bulk shielding from 
the standpoint of system mass: ( 1) The magnetic 
shield which employs purely magnetic forces to de- 
flect charged particles away from a spacecraft, and 
(2 )  the plasma shield which repels positively charged 



particles electrostatically while being held in position 
around the spacecraft by a magnetic field. Magnetic 
shields have earlier been shown 142,431 to be feas- 
ible and competitive provided the shielded volumes 
are large enough and allowable primary dose rates 
for extended missions a re  set low enough. Plasma 
shields, because they require much smaller magnet- 
ic fields and therefore lighter magnetic structures, 
could be considerably lighter than either passive o r  
purely magnetic shields for all shieldedvolumes and 
dose rate requirements. However, the rather early 
state of research on the plasma shield concept and 
the fact that it has not yet been demonstrated that a 
successful plasma shield concept can be built pre- 
vents any firm predictions of the com2etitive positions 
of magnetic and plasma shields. 

Charged Particle Motion 

Several aspects of the theory of charged particle 
motion in axially symmetric magnetic fields were 
extended during the past year. A theoretical treat- 
ment of the problem of specifying the shielding cap- 
abilities of general axial field configurations, and 

WMlT A POINT C 

application to some particular fields was published 
[ 441. Figure 19 shows a number of limiting cases 
for  charged particle exclusion from the vicinity of a 
pair of coaxial current loops whose symmetry axis 
is the vertical axis. This general work was also 
extended [ 451 to a case of geomagnetic interest - a 
dipole plus coaxial quadrupole. Related work was 
also carried out under the laboratory support con- 
tract. This work resulted in a n  annotated biblio- 
graphy [ 461 of the literature on charged particle 
motion and magnetic shielding. More recent studies 
under this task [ 471 are considering the permissible 
particle fluxes in the vicinity of a dipole field (plus 
various equatorial current ring configurations) and 
of the fields of solenoids. 

Development of Superconducting Magnets 

Work to advance the physics and technology of 
large, high field superconducting coils was actively 
pursued over the past year with five contracts [ 48- 
521 covering a number of areas of investigation. 

The chief topic of concern was the attempt to 
understand in detail supercurrent instabilities in 

POINT K POINT J 

0 1.0 20 3.0 p' 0 1.0 20 3.0 p' 

POINT F 

POINT H 

0 I .o 2.0 3.0 

FIGURE 19. CRITICAL POINTS IN THE ( p  , 0 ) PLANE OF A DOUBLE-PARALLEL LOOP SYSTEM 
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superconductors. These instabilities, due to non- 
uniform flux motion through the magnetic windings 
as the field is changed, prevent the attainment of 
theoretically possible fields without the use of in- 
volved and expensive metallurgical and manufactur- 
ing methods. The effects on these instabilities due 
to metallurgical structure and history, conductor 
shape and winding configurations, and magnetic and 
thermal environment were the subject of considerable 
research effort [ 53-64]. Other work covered the 
changes in superconductive properties due to nuclear 
irradiation [ 551, microprobe techniques for  mapping 
field and current distributions within coil windings 
[ 62,631, flux pumping techniques for  energizing high 
current windings by means of low current power 
sources [ 641 , and use of the superfluid properties of 
Helium II to improve the cooling within tightly wound 
magnets without separate cooling passages [ 641. 

Work performed under this program and by other 
organizations continues to advance the magnetic 
field strength and working volume of superconducting 
magnets as illustrated in Figure 20. The devices 
indicated by X are the more important of those tested 
o r  under construction during the past year. Shown 
also a re  the field-volume combinations which will be 
required for magnetic and for  plasma shields. As 
magnet sizes and field strengths increase, problems 
of providing an environment of liquid helium for re- 
frigeration, of providing structural strength to with- 
stand the high magnetic forces, and of providing 
access to the useful high field region become corres- 
pondingly more serious, and costs rise accordingly - 
hence the small number of new devices. 

01 I I 10 100 

INSIDE DIAMETER (meter) 

FIGURE 20. SUPERCONDUCTING MAGNETS, 
JANUARY 1966 
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The Plasma Shield Concept 

The recent plasma shield work at Avco [ 651 
has been characterized by active theoretical work 
and the construction of new experimental apparatus. 
Several lines of important collateral research seem 
to be developing along with the plasma shield. The 
plasma shield concept [66] shown in Figure 21 is a s  
follows: By means of a strong magnetic field supplied 
by superconducting magnets, electrons are removed 
and excluded from the space vehicle, which assumes 
a positive charge. The electric field provided by the 
charge separation protects the spacecraft from ener- 
getic positively charged particles. 

ELECTRON CLOUD DRIFT 

ELECTRON GUN 

SUPERCONDUCTOR ' . SPACE~HIP 
INTERIOR 

FIGURE 21. SCHEMATIC DIAGRAM OF A SPACE 
VEHICLE USING A PLASMA RADIATION SHIELD 

The interesting feature of the plasma shield is 
that it establishes an electric potential hill on the 
inside of a magnetic field about which a cloud of 
electrons migrates. The electrons can move across 
the field to the positively charged region only by col- 
lisions with each other o r  with neutral gas atoms and 
ions. By measuring the rate of electron migration, 
it is speculated that gas pressures as low a s  2.67 x 

newtons per square meter can be measured. 

By inverting the configuration so that electrons 
a re  on the inside of the magnetic field, there is 
created a potential well into which positive ions can 
be injected and contained a t  very high energies. This 
means that the plasma shield concept could evolve 
into a high-energy reaction chamber [ 671 useful for  
studying collision and nuclear processes. It is also 
possible to think of the device a s  a high voltage gen- 
erator. The voltages which the developers think will 
be feasible are shown in Figure 22 [66]. 



FIGURE 22. MAP OF ONE-METER ELECTRON 
PLASMA CONTAINMENT DEVICE 

Another possibility consists of using the device 
as an oscillator at microwave frequencies [ 681 with 
the ability to radiate over a widely adjustable fre- 
quency range without wave guides and antennae. 

PARTICLE POPULATIONS AND METEOROID 
DISTRIBUTIONS 

The behavior of particle swarms has been stud- 
ied (I) for the purpose of providing the physical 
framework for understanding measured distributions 
of meteoroids and dust particles and ( 2 )  for comput- 
ing the relative hazards associated with dispersions 
by explosions in orbit and on the lunar surface. The 
relation of the distribution functions to such para- 
meters as satellite motion, distance from the earth, 
meteoroid velocity and direction of injection has 
been discussed in a series of published papers [ 69- 
731. Present work is concerned with the distribution 
of debris on the lunar surface by active seismic 
shots [74]. 

A recent study of bound orbits [ 751 published by 
Hale and Wright in the JGR, resulted in data such as 
that shown in Figure 23, which shows what happens to 
particles injected isotropically at various altitudes 
as a function of injection velocity. The most inter- 
esting feature of this study is the fact that the flux 
maximum for such distributions always occurs at 
less than 1.5 earth radii away from the center of the 
earth. The fraction of particles in  surviving orbits 
to total particles injected isotropically at ro is shown 
in Figure 24 [75]. 

FIGURE 23. RADIAL DISTANCE OF FLUX 
MAXIMUM FOR BOUNDED PARTICLES 

.- .- ~ 

RELATIVE INJECTION VELOCITY, u 

FIGURE 24. FRACTION OF PARTICLES IN 
SURVIVING ORBITS TO TOTAL PARTICLES 

INJECTED ISOTROPICALLY AT ro 

ELECTRONIC CHARGE STORAGE PHENOMENA 

In order to learn more about the phenomena 
resulting from electronic charge storage in dielectrics 
in general and the observable effects in  particular to 
be expected when Pegasus panels are subjected to the 
electron bombardment in  the charged particle belts 
around the earth, a small experimental program was 
undertaken under contract with Lockheed-Georgia 
Nuclear Laboratories. To this purpose, a specially 
designed strontium-yttrium beta ray source was 
fabricated by the Isotope Division of the Oak Ridge 
National Laboratory. The source (Fig. 25) comprises 
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FIGURF: 25. STRONTIUM-YTTRIUM 
BETA RAY SOURCE 

80 tubes with an active length of about 20 inches (51 
centimeters) and a total source strength of approxi- 
mately 800 curies. Assembled in a rectangular ar- 
ray, the source provides an essentially uniform irrad- 
iation flux of about 5 x I O 8  electrons per square cent- 
imeter per second over an area of about 20 inches by 
40 inches (51 centimeters by 102 centimeters) at 
distances a few centimeters from the tube surfaces. 

The contractor, using this source, an environ- 
mental chamber constructed previously under an un- 
related NASA contract, and one of the large hot cells 
available at the Dawsonville Nuclear Laboratories, 
assembled and instrumented an experimental arrange- 
ment to test a Pegasus panel under electric bombard- 
ment in a cryogenic and vacuum environment. A 
vacuum of 6.66 x newtons per square meter was 
obtained, with temperature down to 208" K. Principal 
instrumentation consisted of an oscilloscope and 
camera to record pulse size and shape and a timing 
circuit. Typical circuit arrangements are shown in 
Figure 26. 

For the experimental configuration employed, 
a multitude of pulses have been observed. The 
largest pulse seen was 2 . 4  volts; all others were 
below 2 volts, with the majority in the 50- to 200- 
millivolt range. Pulses of both polarities result, 
apparently independent of the impressed voltage. 
At 208" K a discharge rate of 1 / 2  pulse to 1 pulse 
per minute was observed. As the temperature is 
increased, the pulse rate decreases until at about 
258" K no pulses are observed. The size of the 
pulses seems to indicate that the capacitor is break- 
ing down only locally. 

Hopefully a follow-on study can be conducted 
in which an environment more nearly like that 
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FIGURE 26. PEGASUS OSCILLOSCOPE CIRCUITS 

encountered by Pegasus satellites can be simulated. 
In particular, plans are being made to vary the tem- 
perature through a cycle of 233" to 313" K, t ry  to 
cycle the radiation intensity, use a filtering network 
such as that used in flight and perhaps test  a "hit 
microplane" in the radiation environment. Additional 
measurements will help materially to understand the 
basic discharge mechanism, and successively smaller 
rings will be etched in one of the panels to effectivek 
produce capacitors of different areas. Plans also 
specify the use of different panel thicknesses, differ- 
ent type capacitors, and to test more carefully for 
effects of temperature on pulse size and frequency. 

PROJECT SUPPORT 

ORBITAL AND TRAJECTORY CODES FOR 
RADIATION DOSE CALCULATIONS 

The objective of this work was to develop compu- 
ter codes that provide the integrated electrons and 
proton flares and energy spectra encountered by a 
spacecraft orbiting o r  traversing the trapped radia- 
tions surrounding the earth. First, the coordinates 
of the satellite as a function of time were computed 
from the six orbital elements defining the particular 
mission. These coordinates were then converted 
into the B-L coordinates of McIlwain's [ 761 using a 



48-term expansion [ 771 for the magnetic field of the 
earth. Using the data compilation of Vette's [ 781, 
the magnetic coordinates were used to find energy 
spectra and fluxes for each coordinate point. A time 
integral of the radiation exposure was then made and 
penetrations were calculated. 

MASS 

OUTSIDE CM 

THICKNESS 

MASS 

Among the various project-oriented tasks under- 
taken by using the orbital and trajectory codes during 
the past year  was the evaluation of the space radiation 
hazard in the SIV-B hydrogen tank, the radiation 
hazard and shielding requirements in a synchronous 
orbit, and the radiation dose analysis of six trajec- 
tories to the moon. The latter work was performed 
for NASA Headquarters after help in evaluating con- 
flicting results obtained by two industrial contractors. 
Figure 27 represents a summary of the SIV-B work- 
shop radiation hazard analysis. Figure 28 is a typi- 
cal curve of the electron and bremsstrahlung haz- 
a rd  in a synchronous orbit, and Table VI gives the 
shelter weight requirements for a synchronous orbit 
where the radiation is about 40-rads skin dose and 
about 25 rads at the bone marrow. Figure 29 shows 
the radiation doses from electrons and bremsstrah- 
lung for three different trajectories to the moon 
starting at a parking altitude of 200 kilometers above 
the earth. The important point of this graph i s  the 
extreme variations in radiation dose along different 
escape orbits through the trapped radiation belts. 

1313 kg 1810 kg 
(2890 Ibm) (3980 Ibm) 

15 cm 7 . 5  cm 

2080 kg 2750 kg 
(4420 Ibm ) (6050 lbm ) 

ALTITUDE (kilometers) 

FIGURE 27. SPACE RADIATION DOSE FOR ONE 
WEEK EXPOSURE IN THE S-IVB HYDROGEN TANK 

AUMINUM SHIELD (gm/cm3) 
FIGURE 28. SYNCHRONOUS ORBIT 

ELECTRON DOSE 

TABLE VI. SHELTER WEIGHT REQTJIREMENTS 
FOR A SYNCHRONOUS ORBIT DUE TO ELECTRON 

AND BREMSSTRAHLUNG HAZARD 

I (CH,) AL 
INSIDE CM 

THICKNESS I 10 cm I 5.3 cm 

NUCLEAR GROUND TEST MODULE 

There were no specifically identified radiation 
studies associated with this effort, although the air 
scattering capabilities of the COHORT machine code 
were designed with pdssibilities such as ground testing 
of nuclear rockets in mind. 

17 



.UNG DOSE 

5 
SHIELD THICKNESS ( g m / c m z o f A l )  

FIGURE 29. ELECTRON AND BREMSSTRAHLUNG 
DOSE CURVES 

EXPERIMENT INTEGRA TION 

Experiments will be exposed to the radiation 
naturally present in space and to radiation associated 
with space power supplies using radioisotopes o r  
reactors. In addition, the experiments may depend 
on other components such as solar cells o r  external 
cables that are also sensitive to radiation. Table 
VI1 lists other areas which will receive considerable 
attention in such experiments. It is probable that 
the interpretation of certain radiation measurements 
will require extensive analysis from the radiation 
transport viewpoint. For  example, a measurement 
of neutron albedo from low orbit must be concerned 
with such factors as neutron production in the atmos- 
phere by high energy protons, propagation of neutrons 
through the atmosphere and production of neutrons 
within the spacecraft itself. From the experiment 
viewpoint, the particular interest in radiation will 
depend on what is being measured, the degree of 
radiation exposure and whether o r  not the effects of 
radiation on other parts of the spacecraft are harm- 
ful to the particular experiment. No enlightening 
formula for predicting the importance of radiation to 
experiments can be given, but a number of specific 
examples are now past history. If radiation affects 

TABLE VII. RADIATION AND EXPERIMENT 
INTEGRATION 

SOLAR CELL DAMAGE 

CHANGE IN TEMPERATURE CONTROL SURFACES 

RADIATION PRODUCED IN SPACECRAFT 

RADIOISOTOPE POWER SUPPLIES 

RADIOISOTOPE APPLICATIONS 

CHARGE STORAGE AND ELECTRICAL DISCHARGES 

SPURIOUS CURRENTS 

INDUCED CONDUCTIVITY 

FILM DARKENING 

ASTRONAUT EXPOSURE 

the temperature central surfaces, the experiment 
will suffer. If the solar cells are insufficiently 
shielded, they may be overexposed by radiation. If 
external points are good insulators, they may store 
charges and produce electric fields intense enough 
to interfere with interpretations of plasma measure- 
ments that are already difficult enough to interpret. 
If charged particle radiation is stored in dielectrics 
to the extent that catastrophic breakdown occurs, 
the electric signals produced could feed into the 
spacecraft logic system and cause spurious counts. 
Radiation-induced conductivity and spurious currents 
can also occur. These and other problems are 
associated with radiation in space, and there will 
undoubtedly be new experiments and new problems 
with even worse radiation environments. 

PEGASUS DATA 

Before the Pegasus satellites were launched, 
there was concern that the electrons in the Van 
Allen belts would be stored in the dielectrics of 
connecting cables and capacitors and that subsequent 
electrical discharges would be counted as meteoroid 
hits. The problem was circumvented by using the 
lowest possible orbits and designing the electronic 
circuitry to discriminate against pulses of the wrong 
size, shape, o r  polarity. 

To confirm that electron fluxes were low 
enough to prevent spurious discharges, a simple two- 
threshold electron spectrometer (Fig. 30) was 
carried on each spacecraft. Much valuable data have 
been collected on the distribution of electron fluxes 
in the South Atlantic anomaly region of the radiation 
belts. A typical plot in B-L coordinates of Pegasus 
I data is shown in Figure 31, together with pre- 
dicted fluxes for the same time period. 
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FIGURE 32. ELECTRIC SPACESHIP FOR 
MANNED MARS FLIGHT 

FIGURE 30. PEGASUS ELECTRON 
SPECTROMETER 
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FIGURE 31. PEGASUS ISOFLUX CONTOURS 
FOR ELECTRONS 

ADVANCED PROPULSION 

Almost every advanced propulsion system for 
manned exploration envisions the use of nuclear 
power in some form and is motivated by the desire 
for longer voyages in space. An artist's concept of 
one such system is shown in Figure 32. 
and gamma radiation from the reactors must be 
shielded against, and since greater distances are to 
be covered, man is exposed to space radiations for 
longer periods of time. In a recent paper [ 791, the 
radiation problems associated with a nuclear, nu- 
clear-electric spacecraft were studied for a manned 
Mars expedition. Radiation sources considered 

The neutron 

were Van Allen belts, solar flares, cosmic rays, a 
nuclear heat exchanger reactor and a nuclear elec- 
tric power supply. Because the flight was planned 
to occur during a period of relatively quiet sun, the 
dominant radiation dose came from the reactor 
systems. A typical reactor shield design is shown 
in Figure 33. Tungsten is employed primarily as 
an efficient gamma-ray shield; lithium is used pri- 
marily to attenuate neutrons. The shield is heavily 
contoured to reduce the weight of the system and is 
left unshielded in directions in which the radiation 
will neither strike personnel or  equipment nor scat- 
ter off structural members of the spacecraft. Be- 
cause of the shield shaping, personnel activities 
about the spacecraft would have to be carefully 
controlled. Specifications for the shield system are 
given in Table VIII. 

FIGURE 33. REACTOR SHIELD FOR ELECTRIC 
SPACESHIP 

19 



TABLE VIII. REACTOR SHIELD SPECIFICATIONS 
FOR THE NUCLEAR ELECTRIC SPACESHIP 

REACTOR POWER (THERMAL) 134 M W  

ELECTRIC POWER 20 M w  

URANIUM LOADING (d3’) 
REACTOR MASS 

Lm MASS 

TUNGSTEN MASS 

TOTAL REACTOR AND 
SHIELD MASS 

4.5 x io3 kg 

1.2 x I O 4  kg 

1.7 x io4 kg 

3.3 x I O 4  kg 

6.2 x I O 4  kg 

RADIOISOTOPE APPLICATIONS AND 
I NSTR UMENTAT I ON 

The interposition of matter between a radiation 
source and a radiation detector reduces the signal 
received by the detector. Since the days of Roentgen, 
this phenomenon has had wide application fqr deter- 
mining the distribution of matter in inaccessible 
places. The use of gamma rays to evaluate proton 
and electron shields is essentially the classical X- 
ray technique with emphasis on Compton scattering, 
which is sensitive to electron areal density, the 
determining factor in proton shielding. The diag- 
nosis of scattered a s  well as transmitted radiation 
is also of importance in  many applications. The 
value of radioisotope tracers was demonstrated 
extensively shortly after the fission process was 
brought under control and radioisotopes became 
easily available. The Mossbauer effect made pos- 
sible the use of radiation sources to determine rel- 
ative motion between a source and detector and intro- 
duced a new kind of velocity meter and accelero- 
meter. 

RADIOISOTOPE FUEL GAUGE 

The determination of the amount of propellant 
in a tank under zero gravity conditions is not a 
straightforward matter. One way to do it is to 
“X-ray” the propellant mass by means of several 
radioisotope sources and radiation detectors and to 
compute the mass from the measured radiation at- 
tenuations [ 801 - How well this technique works has 
not been demonstrated under space conditions, but 
is expected to be tested on the LEM descent module 
in MSFC Experiment No. 3. 

VAPOR QUALITY METER 

To insure proper pressure regulation in  a tank 
containing liquid hydrogen, it is necessary to vent 
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the vapor boiling off because of heat leakage into the 
system. However, it is important to prevent the 
ejection of liquid along with the vapor as the liquid 
sloshes o r  undergoes redistribution because of 
vehicle motion or surface tension forces in  a zero 
gravity environment. The purpose of the vapor 
quality meter is to measure the density of hydrogen 
in the hydrogen vent line and thereby determine if 
liquid is escaping. The vapor quality or &-meter 
was developed for  use with the LH2 experiment on 
Vehicle 203, and may also be flown on Vehicles 501- 
503. 

There are several designs of vapor quality 
meters. In one design [ 811 useful for large pipes, 
gamma radiation is scattered by the volume of in- 
terest according to the mass of hydrogen there. The 
scattered photons are reduced in energy and may be 
analyzed selectively to yield a signal proportional 
to the mass of hydrogen viewed jointly by the radio- 
isotope source and radiation detector. In another 
design [ 821 useful for  smaller pipes, the reduction 
of beta transmission from source to detector is 
analyzed to determine the quantity of liquid present 
in  the vent line. 

The extent to which radioisotope quality meters 
will be applied is not determined a t  this time, al- 
though their use appears certain. The addition of 
one Curie of Americium 241 in the meter using the 
gamma-scattering technique presents problems from 
the safety and interference viewpoints, and it may 
happen that the degree of application will depend on 
the development of a design which uses a very small 
beta source. 

LEAK DETECTION 

The use of radioisotopes for  leak detection 
[ 831 is based on the assumption that a radio- 
active gas under pressure will enter a leaky compo- 
nent which has been previously outgassing in a 
vacuum. The leak rate is determined by how radio- 
active the component becomes and how fast it decays. 
So f a r  the process seems to be well understood, but 
there is a problem of correlating the radioisotope 
method with mass spectrometer techniques. 

RADIOISOTOPE STAGE SEPARATION INDICATOR 

The use of radioisotopes to measure distance 
depends on the fact that the radiation intensity obeys 
the inverse square law, i. e. , the intensity of radi- 
ation falling on a detector varies inversely as the 
square of the distance between source and detector. 
In one proposed system [ 841 the relative position 
between two planes (the interface between two stages) 



is to be determined by using three sources .in one 
plane and six detectors in the other. 

NEUTRON SPECTROMETER 

A satisfactory method for measuring neutron 
spectra has not yet been developed although this prob- 
lem has been attacked vigorously since nuclear fis- 
sion was achieved. The RIFT program introduced the 
requirement of measuring neutron fluxes and energy 
spectra in a large nuclear stage filled with hydrogen 
and powered by a reactor operating in the gigawatt 
levels. In almost all cases the neutron spectrometer 
must operate in a gamma-ray background to which it 
must be relatively insensitive, Also, it must be de- 
signed so that it does not saturate in relatively high- 
level neutron and gamma fluxes or  be too sensitive 
to spurious signals in a low-level radiation environ- 
ment. 

The neutron spectrometer under development 
[ 851 by IITRI uses the exoergic reaction ,,N1 + 2He3- 
iP* + iH3 + 800 kiloelectron volts in a small chamber 
filled with He3 gas. To discriminate against noise, 
the chamber is divided into two parts (acting a s  pro- 
portional counters); a solid state detector is then 
placed on each end of the chamber. By adding the 
four pulse contributions and incorporating the proper 
coincidence requirements, a neutron spectrometer 
capable of operating in rather intense fields has 
been obtained. In a recent test [ 861 this device shows 
a count rate of 5 x io3 counts per minute in a gamma 

field of io6 roentgens per hour, or  roughly ioii pho- 
tons per square centimeter per  second. A neutron 
flux of io8 neutrons per square centimeter per second 
would produce roughly ten times this count rate. 
This reasonably good gamma discrimination will be 
necessary in the RIFT (or  a similar) nuclear stage 
because liquid hydrogen is a poor gamma and good 
neutron shield, which means that neutrons will be 
counted in a strong gamma field. 

CONCLUS IONS 

The technology of radiation is common enough to 
provide a broad base in space engineering. The in- 
creased use of radioisotope power supplies and nu- 
clear stations for space exploration could produce 
a greatly increased emphasis on the aspects of radi- 
ation interactions with materials and components, 
and the interference of radiation sources with scien- 
tific and engineering experiments. In addition, radi- 
ation would impose operational constraints on manned 
missions in space, more from the biological view- 
point than from the consideration of damage to equip- 
ment. It is possible that operational aspects of 
nuclear systems will require considerable additional 
attention because of the many interesting cosmologi- 
cal experiments concerned with the measurements of 
radiations that a r e  very similar to those arising from 
radioisotopes used on spacecraft and from reactors 
used for  propulsion and power supplies. 
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UNITS OF MEASURE 

In a prepared statement presented on August 5, 1965, to the 
U. S. House of Representatives Science and Astronautics Committee 
(chaired by George P. Mil ler  of California), the position of +e 
National Aeronautics and Space Administration on Units of Measure 
was statedby Dr. Alfred J. Eggers, Deputy Associate Administrator, 
Office of Advanced Research and Technology: 

"In January of this year NASA directed that the international 
systemof units should be considered the preferred system of units, 
and should be employed by the research centers a s  the primary 
system in all reports and publications of a technical nature, except 
where such use would reduce the usefulness of the report to the 
primary recipients. During the conversion period the use of cus- 
tomary units in parentheses following the SI units is permissible, 
but the parenthetical usage of conventional units will be discontinued 
as soon as it is judged that the normal users of the reports would 
not be particularly inconvenienced by the exclusive use of SI units, 

The International System of Units (SI Units) has been adopted 
by the U. S .  National Bureau of Standards (see NBS Technical News 
Bulletin, Vol. 48, No, 4, April 1964). 

The International System of Uni t s  is defined in NASA SP-7012, 
"The International System of Units, Physical Constants, and 
Conversion Factors,fq which is available from the U. S. Government 
Printing Office, Washington, D. C. 20402. 

SI Units are used preferentially in this series of research re- 
ports in  accordance with NASA policy and following the practice of 
the National Bureau of Standards. 



CALENDAR OF REVIEWS 

FIRST SERIES ( VOLUME I ) 

REVIEW DAI'E RESEARCH AREA 

1 2/25/65 RADIATION PHYSICS 

2 2/25/65 THERMOPHYSICS 

3 3/25/65 CRYOGENIC TECH- 
NOLOGY 

* 4  3/25/65 CHEMICAL PRO- 
PULSION 

5 4/29/65 ELECTRONICS 

6 4/29/65 CONTROL SYSTEMS 

I 5/27/65 NATERIALS 

8 5/21/65 MANUFACTURING 

9 6/24/65 GROUND TESTING 

10 6/24/65 QUALlTY ASSURANCE 
ANDCHECKOUT 

l i  9/16/65 TERRESTRIAL & SPACE 
ENVIRONMENT 

L. Classified. Proceedings not published. 

SECOND SERIES ( VOLUME I I  ) 

REVIEW 

12 

13 

14 

15 

16 

17 

18 

19 

20 

2 1  

22 
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9/ 16/6 5 

9/30/65 

9/30/65 

10/28/65 

10/28/65 

1/27/66 

1/27/66 

1/6/66 

1/6/66 

2/24/66 

2/24/66 

RESEARCH AREA 

AERODYNAMICS 

INSTRUMENTATION 

POWER SYSTEMS 

GUIDANCE CONCEPTS 

ASTRODYNAMICS 

ADVANCED TRACKING 
SYSTEMS 

COMMUNICATIONS SYSTEMS 

STRUCTURES 

MATHEMATICS AND 
COMPUTATION 

ADVANCED PROPULSION 

LUNAR AND METEOROID 
PHYSICS 

REVIEW - DATE RESEARCH AREA DATE RESEARCH AREA t REVIEW 
1 3/31/66 RADIATION PHYSICS 

2 3/31/66 THERMOPHYSICS 

3 5/26/66 ELECTRONICS 

5 9/29/66 QUALITY AND RELIABILITY 
ASSURANCE 

6 1/26/67 CHEMICAL PROPULSION 

3/30/67 CRYOGENIC TECHNOLOGY 
4 1/28/66 MATERIAIS 
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Alabama 35812. 


